Interaction between Ca2+, cyclic 3',5' adenosine monophosphate, the superoxide anion, and tyrosine phosphorylation pathways in the regulation of human sperm capacitation.
نویسندگان
چکیده
In order to fertilize the egg, spermatozoa must go through the capacitation process where they experience Ca2+ uptake, increases in cyclic 3',5' adenosine monophosphate (cAMP) concentrations, superoxide anion production, and protein tyrosine phosphorylation. Although the importance of these processes has been described, the interactions between them, as well as the temporal sequence of these events, remain to be demonstrated. Previous studies from our laboratory have demonstrated that tyrosine phosphorylation of p105 and p81 (p105/81), the two major human sperm phosphotyrosine-containing proteins, was under cAMP and oxygen derivatives regulation. In the present study, we investigated the importance of intra- and extracellular Ca2+, as well as the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine and the phosphatase inhibitors calyculin A and okadaic acid, in the production of superoxide anion and p105/81 tyrosine phosphorylation. An increase in p105/81 phosphotyrosine content was observed when spermatozoa were incubated in the absence of extracellular Ca2+ or with the calmodulin antagonist N-(6-aminohexyl)-1-naphthalenesulfonamide. However, the human sperm capacitation inducer FCSu (ultrafiltrate of fetal cord serum) requires the presence of the extracellular Ca2+ to induce capacitation, superoxide anion production, and tyrosine phosphorylation of p105/ 81, whereas free intracellular Ca2+ had no effect on these last two processes. The production of superoxide anion by spermatozoa was stimulated by inhibitors of phosphodiesterases and serine/threonine phosphoprotein phosphatases. The tyrosine phosphatase inhibitor vanadate decreased by 40% the FCSu-stimulated superoxide anion production, although it had no effect when used alone. These results suggest that, during sperm capacitation, Ca2+ induces an elevation in cAMP levels; this cAMP, through undefined serine/threonine protein phosphorylation, stimulates the generation of superoxide anion, which, in turn, causes the increase in p105/81 phosphotyrosine contents.
منابع مشابه
(S)-α-Chlorohydrin Inhibits Protein Tyrosine Phosphorylation through Blocking Cyclic AMP - Protein Kinase A Pathway in Spermatozoa
α-Chlorohydrin is a common contaminant in food. Its (S)-isomer, (S)-α-chlorohydrin (SACH), is known for causing infertility in animals by inhibiting glycolysis of spermatozoa. The aim of present work was to examine the relationship between SACH and protein tyrosine phosphorylation (PTP), which plays a critical role in regulating mammalian sperm capacitation. In vitro exposure of SACH 50 µM to i...
متن کاملThe testis anion transporter TAT1 (SLC26A8) physically and functionally interacts with the cystic fibrosis transmembrane conductance regulator channel: a potential role during sperm capacitation.
The Slc26 gene family encodes several conserved anion transporters implicated in human genetic disorders, including Pendred syndrome, diastrophic dysplasia and congenital chloride diarrhea. We previously characterized the TAT1 (testis anion transporter 1; SLC26A8) protein specifically expressed in male germ cells and mature sperm and showed that in the mouse, deletion of Tat1 caused male steril...
متن کاملHuman sperm capacitation induced by biological fluids and progesterone, but not by NADH or NADPH, is associated with the production of superoxide anion.
Recent evidence indicated that human sperm capacitation is associated with an increased production of superoxide anion (O2.-). To further study the role and importance of O2.- in capacitation, we investigated whether the O2.- generation is a general feature of capacitating spermatozoa, irrespective of the inducer used, and is correlated with capacitation levels and increased tyrosine phosphoryl...
متن کاملChloride Is essential for capacitation and for the capacitation-associated increase in tyrosine phosphorylation.
After epididymal maturation, sperm capacitation, which encompasses a complex series of molecular events, endows the sperm with the ability to fertilize an egg. This process can be mimicked in vitro in defined media, the composition of which is based on the electrolyte concentration of the oviductal fluid. It is well established that capacitation requires Na(+), HCO(3)(-), Ca(2+), and a choleste...
متن کاملFunctional human sperm capacitation requires both bicarbonate-dependent PKA activation and down-regulation of Ser/Thr phosphatases by Src family kinases.
In all mammalian species studied so far, sperm capacitation correlates with an increase in protein tyrosine (Tyr) phosphorylation mediated by a bicarbonate-dependent cAMP/protein kinase A (PKA) pathway. Recent studies in mice revealed, however, that a Src family kinase (SFK)-induced inactivation of serine/threonine (Ser/Thr) phosphatases is also involved in the signaling pathways leading to Tyr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of andrology
دوره 19 4 شماره
صفحات -
تاریخ انتشار 1998